

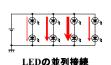
電流バランス機能を備えた 高拡張性LEDドライバの動作解析

佐藤 祐介 鵜野 将年 (茨城大学)

各LEDストリングに

可変抵抗器を

使用した方式



▶ LEDの輝度は電流依存

▶ 順方向電圧ばらつき

LEDの輝度ばらつき

- ▶ 低電圧で駆動可能

▶ LEDの輝度が不均一

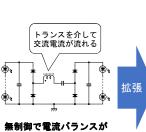
***** | ***** | *****

各LEDストリングに コンバータを 使用した方式

▶ 回路の複雑化

Converter Converter

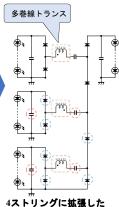
Converter


- コンバータ多数必要
 - →高コスト化
 - ▶ 電流センサ多数必要 →高コスト化
 - 電流パランス制御必要

可変抵抗

A

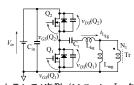
(A) (<u>A</u>)


▶ 低効率

可能な方式

多巻線トランス必要

- 低拡張性
- 設計困難
- 回路の大型化
- ストリング数の大幅な拡張困難


LEDドライバ

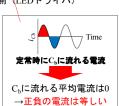
LEDの直列接続

- ▶ 電源の高電圧化
- ▶ 輝度を均一化
- LEDドライバ概念図 ▶ 電流バランス
- →輝度均一化 ▶ 電源の高電圧化回避

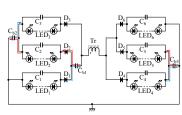
従来のLEDドライバの問題点

提案LEDドライバ

トランス1次側(LLCコンバータ)


LED₂ LED₄ c.II C₁II LED_1 LED₃ トランス2次側 (LEDドライバ)

4ストリング用LEDドライバ

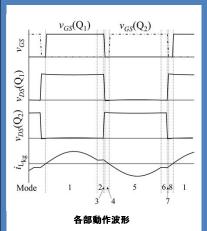

- ▶ 定常状態における電荷保存則を利用
 - →無制御で電流バランス

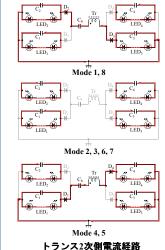
高拡張性

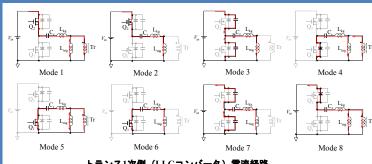
- ダイオードとコンデンサの追加のみで拡張可能
- ・ 任意のストリング数に拡張可能

拡張

6ストリング用LEDドライバ



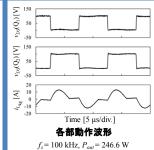

8ストリング用LEDドライバ

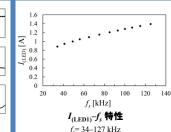

ストリング数拡張の例

ストリング拡張時も $C_{\rm bl}$ - $C_{\rm bs}$ の電荷保存則により 無制御で電流がパランスされる

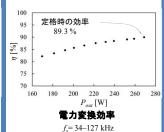
動作モ-

トランス1次側(LLCコンバータ)電流経路


実機検証



同一基板にコンデンサと ダイオードを追加することで 最大8ストリングまで拡張可能


実験条件 ストリング数 45 V $V_{out(\mathrm{LED1})}$ $V_{out({\rm LED2})}$ 47 V 49 V out(LED3) 51 V $V_{out({\rm LED4})}$ V_{in} 100 V 159.2 kHz 共振周波数 f. 最大出力 P_{out(MAX)} 270 W

電子負荷でLEDの 順方向電圧ばらつきを模擬

 $f_s = 34-127 \text{ kHz}$ スイッチング周波数 fにより 出力電流は変化

素子	定数
Cin	Al Electrolytic Capacitor, 100 μF
Q_1, Q_2	FDB28N30TM, R_{on} = 108 m Ω
C_r	Film Capacitor, 1.00 μF
C_1 – C_4	Al Electrolytic Capacitor, 150 μF, 2 Parallel
C_b	Ceramic Chip Capacitor, 10 μF
D_1 – D_4	Silicone Diode, $V_{F(MAX)} = 0.94 \text{ V}$
Gate Driver	IRS2184SPBF, t_d = 400 ns
Tr	N_1 : $N_2 = 10$: 20, $L_{m\sigma} = 67.0 \mu\text{H}$, $L_{k\sigma} = 1.0 \mu\text{H}$

出力電流 イッチング 65 115 127 34 100 **周波数**f_s [kHz] 0.886 1.205 1.398 $I_{(LED1)}$ [A] 0.880 1.094 1.202 1.276 1.345 1.395 $I_{(LED2)}[A]$ $I_{(LED3)}$ [A] 0.880 1.092 1 200 1 275 1 343 1 394 $I_{(LED4)}$ [A] 1.094 1.204 1.280 1.398

いずれの周波数においても 出力電流は無制御でバランス

LEDの点灯実験

今後の予定

- 6-8ストリングでの動作解析
- ▶ 出力電流の定式化
- →出力電流の制御を可能に
- 適切な素子の選定
- →電力変換効率の改善
- ▶ PWM制御可能な方式へ変更