

電気電子工学専攻 鵜野 将年

1

Outline

- 1. Why Isolation?
- 2. Isolated Converter Applications
- 3. Isolated Converters
- 4. Primary- and Secondary-Side Topologies
- 5. Soft Switching in Isolated Converters
- 6. Fundamental Operation (Waveforms and Current Flows)

Why Isolation?

Isolated Converter Applications

- Home appliance
- Electric vehicle
- Renewable energy
- etc.

Electric Vehicle Power System Example

Isolated Converters

Grid-Connected PV System Example

Isolated Converters

Flyback Converter

Forward Converter

(LLC Converter)

Full-Bridge Converter

Isolated Converter Topology

Full-Bridge Converter (with Full Bridge Diode Rectifier)

Combination of primary- and secondary-side circuits with high-frequency transformer in between

Primary-Side Topologies for Isolated Converters

Primary Side Operations (Full- and Half-Bridges)

Output is $\pm V_{in}/N$

Output is $\pm V_{in}/2N_{8}$

Primary Side Operations (AHB and Push-Pull)

Asymmetric Half-Bridge

D: Duty cycle of Q_1 Voltage of C_1 is DV_{in} because the average winding voltage must be 0 under steady-state conditions

Output is
$$+(1-D)V_{in}/N$$
 and $-DV_{in}/N$

Push-Pull

Secondary-Side Topologies for Isolated Converters

Secondary Side Operations (Full Bridge and Doubler)

Doubler

Output is $2v_b$

Secondary Side Operations (Doubler and Center-Tap)

Switching Transitions of Isolated Converter

Switching Transitions of Isolated Converter

Switching Transitions of PWM Buck Converter

Switching Transitions of PWM Buck Converter

Mode 3

Switching Transitions of PWM Buck Converter

Mode 5

Mode 6

Key Waveforms and Current Flow Directions

 Q_2 and Q_3 need to be turned on before i_L reaches zero

Key Waveforms and Current Flow Directions

Modes 5–8 are symmetrical to Modes 1–4

Example: Failure in Soft Switching

